Aerospace Engineers Career Information

At School Soup we want to help you on your Aerospace Engineers Career path. Here in our Aerospace Engineers career section, we have lots of great information to help you learn all about Aerospace Engineers. If you're interested in other possible careers, please select a career from the dropdown menu below to learn more about that specific career.

View All Careers

Significant Points

·     Overall job opportunities in engineering are expected to be good, but to vary by specialty.

·     A bachelor’s degree is required for most entry-level jobs.

·     Starting salaries are significantly higher than those of college graduates in other fields.

·     Continuing education is critical to keep abreast of the latest technology.

Nature of the Work

Aerospace engineers are responsible for developing extraordinary machines, from airplanes that weigh over a half a million pounds to spacecraft that travel over 17,000 miles an hour. They design, develop, and test aircraft, spacecraft, and missiles and supervise the manufacturing of these products. Aerospace engineers who work with aircraft are considered aeronautical engineers, and those working specifically with spacecraft are considered astronautical engineers.

Aerospace engineers develop new technologies for use in aviation, defense systems, and space exploration, often specializing in areas such as structural design, guidance, navigation and control, instrumentation and communication, or production methods. They often use Computer-aided Design (CAD), robotics, and lasers and advanced electronic optics to assist them. They also may specialize in a particular type of aerospace product, such as commercial transports, military fighter jets, helicopters, spacecraft, or missiles and rockets. Aerospace engineers may be experts in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, or guidance and control systems.

Aerospace engineers typically are employed within the aerospace industry, although their skills are becoming increasingly valuable in other fields. For example, aerospace engineers in the motor vehicles manufacturing industry design vehicles that have lower air resistance, increasing the fuel efficiency of vehicles.

Working Conditions

Most engineers work in office buildings, laboratories, or industrial plants. Others may spend time outdoors at construction sites, mines, and oil and gas exploration and production sites, where they monitor or direct operations or solve onsite problems. Some engineers travel extensively to plants or worksites.

Many engineers work a standard 40-hour week. At times, deadlines or design standards may bring extra pressure to a job. When this happens, engineers may work longer hours and experience considerable stress.


In 2009 engineers held 1.5 million jobs. The distribution of employment by engineering specialty is as follows:

Total, all engineers 1,449,000 100%
Civil 237,000 16.4
Mechanical 226,000 15.6
Industrial 177,000 12.2
Electrical 156,000 10.8
Electronics, except computer 143,000 9.9
Computer hardware 77,000 5.3
Aerospace 76,000 5.2
Environmental 49,000 3.4
Chemical 31,000 2.1
Health and safety, except mining safety 27,000 1.8
Materials 21,000 1.5
Nuclear 17,000 1.2
Petroleum 16,000 1.1
Biomedical 9,700 0.7
Marine engineers and naval architects 6,800 0.5
Mining and geological, including mining safety 5,200 0.4
Agricultural 3,400 0.2
All other engineers 172,000 11.8

About 555,000 engineering jobs were found in manufacturing industries, and another 378,000 wage and salary jobs were in the professional, scientific, and technical services sector, primarily in architectural, engineering, and related services and in scientific research and development services. Many engineers also worked in the construction and transportation, telecommunications, and utilities industries.

Federal, State, and local governments employed about 194,000 engineers in 2004. About 91,000 of these were in the Federal Government, mainly in the U.S. Departments of Defense, Transportation, Agriculture, Interior, and Energy and in the National Aeronautics and Space Administration. Most engineers in State and local government agencies worked in highway and public works departments. In 2004, about 41,000 engineers were self-employed, many as consultants.

Engineers are employed in every State, in small and large cities and in rural areas. Some branches of engineering are concentrated in particular industries and geographic areas—for example, petroleum engineering jobs tend to be located in areas with sizable petroleum deposits, such as Texas, Louisiana, Oklahoma, Alaska, and California. Others, such as civil engineering, are widely dispersed, and engineers in these fields often move from place to place to work on different projects.

Engineers are employed in every major industry. The industries employing the most engineers in each specialty are given in the table below, along with the percent of occupational employment in the industry.

Table 1. Percent concentration of engineering specialty employment in key industries, 2008 Specialty Industry Percent






Computer hardware


Electronics, except computer


Health and safety, except mining safety


Marine engineers and naval architects



Mining and geological, including mining safety



Aerospace product and parts manufacturing 59.6
State and local government 22.6
Scientific research and development services 18.7
Pharmaceutical and medicine manufacturing 15.6
Chemical manufacturing 27.8
Architectural, engineering, and related services 16.3
Architectural, engineering, and related services 46.0
Computer and electronic product manufacturing 43.2
Computer systems design and related services 15.0
Architectural, engineering, and related services 19.6
Navigational, measuring, electromedical, and control instruments manufacturing 10.8
Telecommunications 17.5
Federal government 14.4
Architectural, engineering, and related services 28.9
State and local government 19.6
State and local government 12.4
Machinery manufacturing 7.8
Motor vehicle parts manufacturing 7.1
Architectural, engineering, and related services 34.5
Computer and electronic product manufacturing 14.3
Architectural, engineering, and related services 18.1
Machinery manufacturing 13.4
Mining 49.9
Electric power generation, transmission and distribution 36.1
Oil and gas extraction 47.4

Training, Qualifications, Adv.

A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, or civil engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests.

Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. General courses not directly related to engineering, such as those in the social sciences or humanities, are often a required component of programs. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs.

In addition to the standard engineering degree, many colleges offer 2- or 4-year degree programs in engineering technology. These programs, which usually include various hands-on laboratory classes that focus on current issues in the application of engineering principles, prepare students for practical design and production work, rather than for jobs that require more theoretical and scientific knowledge. Graduates of 4-year technology programs may get jobs similar to those obtained by graduates with a bachelor's degree in engineering. Engineering technology graduates, however, are not qualified to register as professional engineers under the same terms as graduates with degrees in engineering. Some employers regard technology program graduates as having skills between those of a technician and an engineer.

Graduate training is essential for engineering faculty positions and many research and development programs, but is not required for the majority of entry-level engineering jobs. Many engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Many high-level executives in government and industry began their careers as engineers.

About 360 colleges and universities offer bachelor's degree programs in engineering that are accredited by the Accreditation Board for Engineering and Technology (ABET), Inc., and about 230 colleges offer accredited programs in engineering technology. ABET accreditation is based on an examination of an engineering program's student achievement, program improvement, faculty, curriculum, facilities, and institutional commitment to certain principles of quality and ethics. Although most institutions offer programs in the major branches of engineering, only a few offer programs in the smaller specialties. Also, programs of the same title may vary in content. For example, some programs emphasize industrial practices, preparing students for a job in industry, whereas others are more theoretical and are designed to prepare students for graduate work. Therefore, students should investigate curriculums and check accreditations carefully before selecting a college.

Admissions requirements for undergraduate engineering schools include a solid background in mathematics (algebra, geometry, trigonometry, and calculus) and science (biology, chemistry, and physics), with courses in English, social studies, and humanities. Bachelor's degree programs in engineering typically are designed to last 4 years, but many students find that it takes between 4 and 5 years to complete their studies. In a typical 4-year college curriculum, the first 2 years are spent studying mathematics, basic sciences, introductory engineering, humanities, and social sciences. In the last 2 years, most courses are in engineering, usually with a concentration in one specialty. Some programs offer a general engineering curriculum; students then specialize on the job or in graduate school.

Some engineering schools and 2-year colleges have agreements whereby the 2-year college provides the initial engineering education, and the engineering school automatically admits students for their last 2 years. In addition, a few engineering schools have arrangements that allow students who spend 3 years in a liberal arts college studying pre-engineering subjects and 2 years in an engineering school studying core subjects to receive a bachelor's degree from each school. Some colleges and universities offer 5-year master's degree programs. Some 5-year or even 6-year cooperative plans combine classroom study and practical work, permitting students to gain valuable experience and to finance part of their education.

All 50 States and the District of Columbia require licensure for engineers who offer their services directly to the public. Engineers who are licensed are called professional engineers (PE). This licensure generally requires a degree from an ABET-accredited engineering program, 4 years of relevant work experience, and successful completion of a State examination. Recent graduates can start the licensing process by taking the examination in two stages. The initial Fundamentals of Engineering (FE) examination can be taken upon graduation. Engineers who pass this examination commonly are called engineers in training (EIT) or engineer interns (EI). After acquiring suitable work experience, EITs can take the second examination, the Principles and Practice of Engineering exam. Several States have imposed mandatory continuing education requirements for relicensure. Most States recognize licensure from other States, provided that the manner in which the initial license was obtained meets or exceeds their own licensure requirements. Many civil, electrical, mechanical, and chemical engineers are licensed PEs. Independent of licensure, various certification programs are offered by professional organizations to demonstrate competency in specific fields of engineering.

Engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering.

Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs.

Job Outlook

Employment of aerospace engineers is expected to grow about as fast as the average for all occupations through 2012. The decline in Defense Department expenditures for military aircraft, missiles, and other aerospace systems has restricted defense-related employment opportunities in recent years. However, an expected increase in defense spending in these areas may result in increased employment of aerospace engineers in defense-related areas during the 2002-12 period. Demand should increase for aerospace engineers to design and produce civilian aircraft, due to the need to accommodate increasing passenger traffic and to replace much of the present fleet with quieter and more fuel-efficient aircraft. Additional opportunities for aerospace engineers will be created with aircraft manufacturers to search for ways to use existing technology for new purposes. Some employment opportunities also will occur in industries not typically associated with aerospace, such as motor vehicles. Most job openings, however, will result from the need to replace aerospace engineers who transfer to other occupations or leave the labor force.


Earnings for engineers vary significantly by specialty, industry, and education. Even so, as a group, engineers earn some of the highest average starting salaries among those holding bachelor's degrees. The following tabulation shows average starting salary offers for engineers, according to a 2008 survey by the National Association of Colleges and Employers.

Curriculum Bachelor's Master's Ph.D.
Aerospace/aeronautical/astronautical $50,993 $62,930 $72,529
Agricultural 46,172 53,022
Bioengineering and biomedical 48,503 59,667
Chemical 53,813 57,260 79,591
Civil 43,679 48,050 59,625
Computer 52,464 60,354 69,625
Electrical/electronics and communications 51,888 64,416 80,206
Environmental/environmental health 47,384
Industrial/manufacturing 49,567 56,561 85,000
Materials 50,982
Mechanical 50,236 59,880 68,299
Mining & mineral 48,643
Nuclear 51,182 58,814
Petroleum 61,516 58,000

Variation in median earnings and in the earnings distributions for engineers in the various branches of engineering also is significant. For engineers in specialties covered in this statement, earnings distributions by percentile in May 2009 are shown in the following tabulation.

Specialty 10% 25% 50% 75% 90%
Aerospace $52,820 $64,380 $79,100 $94,900 $113,520
Agricultural 37,680 43,270 56,520 77,740 90,410
Biomedical 41,260 51,620 67,690 86,400 107,530
Chemical 49,030 60,920 76,770 94,740 115,180
Civil 42,610 51,430 64,230 79,920 94,660
Computer hardware 50,490 63,730 81,150 102,100 123,560
Electrical 47,310 57,540 71,610 88,400 108,070
Electronics, except computer 49,120 60,280 75,770 92,870 112,200

Related Occupations

Engineers apply the principles of physical science and mathematics in their work. Other workers who use scientific and mathematical principles include architects, except landscape and naval; engineering and natural sciences managers; computer and information systems managers; computer programmers; computer software engineers; mathematicians; drafters; engineering technicians; sales engineers; science technicians; and physical and life scientists, including agricultural and food scientists, biological scientists, conservation scientists and foresters, atmospheric scientists, chemists and materials scientists, environmental scientists and hydrologists, geoscientists, and physicists and astronomers.

Sources of Additional Information

For further information about aerospace engineers, contact: